经济政策不确定性对中国能源股票市场的多尺度动态溢出效应Multi-scale Dynamic Spillover Effects of Economic Policy Uncertainty on China's Energy Stock Market
孙青茹,张月,席增雷
摘要(Abstract):
能源股票市场是我国金融市场的重要组成部分,现有研究证实了经济政策不确定性对股票市场的显著影响,但其对我国能源股票市场的动态溢出效应仍未被揭示。本文结合小波变换方法、BEKK-GARCH模型、Diebold-Yilmaz溢出指数和网络分析方法,探究不同时频域下经济政策不确定性对能源股市的直接和间接溢出效应,并进一步采用TVP-SV-VAR模型评估经济政策不确定性对不同类型能源股市的时变冲击效应。结果显示,经济政策不确定性对能源股市的溢出效应具有显著的多尺度特征,且随着尺度增加,二者的传导关系愈加紧密。经济政策不确定性不能直接影响所有能源股票,但能通过级联传导间接影响所有能源股票。此外,经济政策不确定性对不同类型能源股市的冲击效应不同,对煤炭行业股票市场的冲击最显著。因此,要把握经济政策不确定性冲击对能源股票市场的间接影响和中长期影响,在监管和投资时要考虑能源股票的类别,以便更好地把握市场和政策动向,防范金融风险的发生。
关键词(KeyWords): 经济政策不确定性;能源股票市场;级联传导;小波变换;网络分析方法
基金项目(Foundation): 教育部人文社会科学研究青年基金项目“国际大宗商品价格极端波动对我国价格体系的风险传导及防控研究”(24YJCZH264)
作者(Author): 孙青茹,张月,席增雷
DOI: 10.16620/j.cnki.jrjy.2025.04.004
参考文献(References):
- [1]潘艺,张金昌.经济政策不确定性与企业数字化发展:促进还是抑制——来自中国A股上市企业的经验证据[J].当代经济管理,2023,45(12):22-31. [2]王周伟,李凯琪.经济政策不确定性、投资者情绪与银行系统性风险传染[J].金融理论探索,2024(1):18-31. [3]廖文欣,刘金全,徐晓光.经济不确定性对金融市场的影响机理——基于时变风险偏好视角[J].浙江社会科学,2024(10):18-30,156-157. [4]徐方元,侯帅,李可萱,等.经济政策不确定性对国际原油市场与中国能源股市长期相关性的影响研究[J].数学的实践与认识,2025,55(7):70-80. [5]BAKER S R,BLOOM N,DAVIS S J.Measuring Economic Policy Uncertainty[J].Quarterly Journal of Economics,2016,131(4):1593-1636. [6]PáSTOR L,VERONESI P.Political Uncertainty and Risk Premia[J].Journal of Financial Economics,2013,110(3):520-545. [7]DAI Z,PENG Y.Economic Policy Uncertainty and Stock Market Sector Time-varying Spillover Effect:Evidence from China[J]. The North American Journal of Economics and Finance,2022,62. [8]刘凤根,王一丁,王大军.经济政策不确定性与系统性金融风险:研究脉络与展望[J].金融理论探索,2023(4):52-59. [9]李景初.碳价格对股票价格溢出效应研究——基于VARBEKK-GARCH模型的分析[J].价格理论与实践,2023(7):160-163. [10]张爱英,赫永达,文红.基于连续小波的能源价格与能源类股票的交互效应研究[J].经济问题,2020(12):18-28. [11]XI Z L,YU J X,SUN Q R,et al.Measuring the Multiscale Price Transmission Effects from Crude Oil to Energy Stocks:A Cascaded View[J].International Review of Financial Analysis,2023,90. [12]曾志坚,岳凯文,齐力.基于复杂网络的新能源股票间联动性研究[J].财经理论与实践,2015,36(6):44-49. [13]LIN Y,YAN Y,XU J L,et al.Forecasting Stock Index Price Using the CEEMDAN-LSTM Model[J].North American Journal of Economics and Finance,2021,57. [14]DIEBOLD F X,YILMAZ K.Measuring Financial Asset Return and Volatility Spillovers,with Application to Global Equity Markets[J].The Economic Journal,2008,119(534):158-171. [15]DIEBOLD F X,YILMAZ K.Better to Give than to Receive:Predictive Directional Measurement of Volatility Spillovers[J]. International Journal of Forecasting ,2012 ,28(1):57-66. [16]NAKAJIMA J.Time-Varying Parameter VAR Model with Stochastic Volatility:An Overview of Methodology and Empirical Applications[J]. Monetary and and Economic Studies,2011,29:107-142. [17]梁洪.数字金融、金融监管与传统金融跨市场风险溢出[J].当代经济管理,2024,46(8):73-96. [18]JAMMAZI R,REBOREDO J C.Dependence and Risk Management in Oil and Stock Markets.A Wavelet-copula Analysis[J].Energy,2016,107:866-888. [19]TIWARI A K,LUDWIG A.The Export-led Growth Hypothesis for India:Examining Causality by a New Approach in the Time-frequency Domain[J].Applied Economics Letters,2014,21(18):1297-1301. [20]JIANG Z H,YOON S M.Dynamic Co-movement between Oil and Stock Markets in Oil-importing and Oil-exporting Countries:Two Types of Wavelet Analysis[J].Energy Economics,2020,90. [21]FENG S D,HUANG S P,QI Y B,et al.Network Features of Sector Indexes Spillover Effects in China:A Multi-scale View[J]. Physica A:Statistical Mechanics and Its Applications,2018,496:461-473. [22]XIE Q W,LIU R R,QIAN T,et al.Linkages between the International Crude Oil Market and the Chinese Stock Market:A BEKK-GARCH-AFD Approach[J].Energy Economics,2021,102. [23]SUN Q R,GAO X Y,AN H Z,et al.Which Time-frequency Domain Dominates Spillover in the Chinese Energy Stock Market?[J].International Review of Financial Analysis,2021,73. [24]SUN Q R,AN H Z,GAO X Y,et al.Effects of Crude Oil Shocks on the PPI System Based on Variance Decomposition Network Analysis[J].Energy,2019,189. [25]AN Y,SUN M,GAO C,et al.Analysis of the Impact of Crude Oil Price Fluctuations on China’s Stock Market in Different Periods—Based on Time Series Network Model[J].Physica A:Statistical Mechanics and its Applications,2018,492:1016-1031. [26]YU J,XIE W,JIANG Z.Early Warning Model Based on Correlated Networks in Global Crude Oil Markets[J].Physica A:Statistical Mechanics and Its Applications,2018,490:1335-1343. [27]HUANG C X,DENG Y K,YANG X G,et al.A Network Perspective of Comovement and Structural Change:Evidence from the Chinese Stock Market[J].International Review of Financial Analysis,2021,76. [28]魏薇,胡海青,刚翠翠.迎难而上或静待时机:经济政策不确定性对能源企业的投资决策分析[J].运筹与管理,2023,32(3):22-27. [29]姚海祥,刘秋瑜,杨晓光.增强还是减弱:新型金融与传统金融行业之间系统性风险溢出[J].中国管理科学,2025,33(3):1-12.
- (1) China Economic Policy Uncertainty Index[EB/OL].[2025-04-20].https://cbade.hkbu.edu.hk/epu-mainland-china. (1)由于篇幅限制,本文不再介绍MODWT方法的具体步骤,可参考Tiwari等(2014)[19]的研究。